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Abstract--Naphthalene sublimation was used to experimentally determine the average mass transfer 
coefficient in parallel, turbulent flow of air over a fiat plate having a step discontinuity. Transfer coefficients 
were collected for Reynolds numbers ranging from approximately 40 000 to 2 000 000. Data were compared 
to a semi-empirical relationship based on the 1/n power law. A formulation was devised involving the 
Schmidt number as an integral part of the solution, thus avoiding Reynolds' analogy. The Schmidt number 
exponent and the power profile coefficient were expressed in terms of n, which makes the mass transfer 

coefficient directly obtainable from the Reynolds number. 

INTRODUCTION 

The topic of this paper is flow over a flat plate, a 
portion of which sublimates. The sublimating sub- 
stance is naphthalene. The objective of the work is to 
obtain data on ave, rage mass transfer coeffÉcients and 
to formulate a new method of correlating the results. 

Local mass transfer coefficients from a flat plate 
have been extensively investigated. However, little 
attention has been given to correlating the proposed 
average mass transfer coefficient solutions to collected 
data. 

Maisel and Sherwood [1] collected mass transfer 
data from a porous flat plate using water. The Reyn- 
olds number ranged from 65 000 to 674 000 and the 
data were correlated to friction coefficient equations 
according to the Chilton-Colburn analogy. 

Scesa and Saue:r [2] ran tests of heat transfer in 
turbulent flow over a flat plate with a stepwise dis- 
continuous surface temperature using heated strips. 
They applied the Rubesin starting length correction 
to correlate their data with the Colburn analogy. Their 
results showed good correlation with Rubesin's 
starting length correction for Reynolds numbers 
between 60 000 and 800 000. 

Sherwood and Bryant [3] used naphthalene to 
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determine sublimation mass transfer from flat plates 
in compressible boundary layers with a reported Mach 
number of 0.43 for the incompressible case. Incom- 
pressible flow theory has been found to generate an 
error of approximately 10% in the density prediction 
at such a Mach number [4]. 

Sogin [5] used naphthalene cast in trays to simulate 
isothermal strips on a 0.38 m (15") flat plate. The tests 
were run under laminar flow conditions. The majority 
of the data were collected at a Reynolds number of 
250 000. Sogin reported good agreement with laminar 
flow theory. In a follow-up publication, Sogin and 
Goldstein [6] used the same set-up in turbulent flow. 
A thin wire was used to trip the boundary layer. The 
tests were performed at two free stream velocities: 
22.6 and 34.1 m s - l  (74 and 112 ft s-J). The range 
of the Reynolds number extended from 150 000 to 
500000. Due to the existence of the trip wire, the 
origin of the boundary layer was estimated to be 
0.05 m (2") upstream of the leading edge. This appa- 
rent location was then used as the origin for all 
measurements along the plate. 

Reynolds [7] proposed a solution for the heat trans- 
fer from a flat plate in turbulent flow with a step 
change in temperature. While his was not the first, it 
provided better correlation than previous methods. 
Reynolds reported that while his own data behaved 
similarly to Scesa and Sauer's for the same range of 
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NOMENCLATURE 

CA local naphthalene concentration 
[mol m 3] 

CA0 naphthalene concentration at soluble 
surface [mol m -  3] 

CA~ free stream naphthalene concentration 
[mol m -3] 

cr/2 local skin friction coeffÉcient, zo/pv 2 
~AB binary diffusivity of naphthalene into 

air [m 2 s i] 
H height of laboratory [m] 
/~mL average mass transfer coefficient 

[ms- ' ]  
hmx local mass transfer coefficient [m s-1] 
L length of flat plate [m] 
Za length of naphthalene cast [m] 
1 length of laboratory [m] 
mf final mass of plate for the actual test 

[kg] 
mft final mass of plate for the transient 

losses test [kg] 
min initial mass of plate for the actual test 

[kg] 
mi.t initial mass of plate for the transient 

losses test [kg] 
n denominator of power in power profile 
NA molar flux [mol m -2 s -q  
ReL overall Reynolds number, vo~L/v 
Rex local Reynolds number, Vo~X/V 
Sc Schmidt number, V/~Aa 
Sh Sherwood number, Sc hmLZ/v 
StABL average Stanton number, hmL/voo 
StAB~ local binary Stanton number, hmx/V~ 

or dtSa/dx 
St local Stanton number for heat 

transfer, hx/V~o 
t duration of a single actual test run [s] 
Ta~ average absolute temperature during a 

test run [K] 
vo~ free stream velocity [m s-~] 

vx x-component of velocity [m s-1] 
v~ + x-component of universal velocity, 

v/(%/p)'/2 
W width of naphthalene cast [m] 
w width of laboratory [m] 
x distance along the plate from the 

leading edge [m] 
x0 location of the concentration step 

change [m] 
y distance away from the plate [m] 
y+ universal distance away from the 

plate, y(zo/p) I/2 /v. 

Greek symbols 
A ratio of concentration boundary layer 

thickness to momentum boundary layer 
thickness 
momentum boundary layer thickness 
[m] 

62 momentum thickness [m] 
6 4 diffusion thickness [m] 
6c diffusion (or concentration) boundary 

layer thickness [m] 
ec eddy concentration diffusivity [m 2 s-  1] 
/3 m eddy momentum diffusivity [m 2 S-1] 
2 coefficient of 1/n velocity power profile 
v kinematic viscosity, i.e. momentum 

diffusivity of free stream fluid 
[m 2 s-i]  

p density of free stream fluid [kg m-3] 
p~, free stream vapor density of 

sublimating substance [kg m -3] 
Pv~ surface vapor density of sublimating 

substance [kg m -3] 
Zo shear stress at the wall, -#(Ovx/~y)lo 

IN m -2] 
zy shear stress at a distance y inside the 

boundary layer [N m-2]. 

Reynolds numbers, the Rubesin starting length cor- 
rection became inadequate at higher Reynolds 
numbers, especially near the temperature disconti- 
nuity. He based his velocity and temperature profiles 
on the 1/n power law and used the Reynolds analogy 
to relate heat diffusivity to momentum diffusivity, 
hence limiting his solution to Prandtl numbers of 1. 
Despite the fact that his velocity and temperature 
profiles over his flat plate coincide with n = 5.6, he 
used a value ofn = 7 because it correlated much better 
with his heat transfer data. He had experimental 
agreement with his solution up to a Reynolds number 
of 3 500 000. 

Recently, there has been a renewed interest in 1/7 
power law for predicting heat transfer from flat plates. 
Love et al. [8, 9] and Taylor et al. [10] repeated Reyn- 

olds' experiment. However, they used the bottom wall 
of the test section as their heated plate. A thin wire 
was used to trip the boundary layer. They were able 
to duplicate Reynolds' results and extend the validity 
of the 1/7 power law to a Reynolds number of 
10 000 000. 

Chyou [11] used the 1/7 power law based on Reyn- 
olds' work to obtain an analytical solution for the 
special case of a constant heat flux plate with a short 
unheated insert containing a concentrated heat 
source. He compared his solution to data and to a 
numerical model. He concluded that the analytical 
method provides a simple, technically useful tool for 
predicting heat transfer from fiat plates in turbulent 
flows. 

Huang et al. [12] constructed mean velocity profiles 
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for turbulent boundary layers with isothermal or adia- 
batic walls. The Prandtl number was assumed to be 
0.9 throughout the study. A good agreement with data 
is obtained for Mach numbers as high as 11. This 
paper proposes art iterative technique for determining 
the skin friction ztnd, while it studies the effects of a 
temperature difference between the surface of the plate 
and the free stream on the shape factor, it does not 
discuss heat transfer coefficients. 

So [13] studied the effects of the pressure gradient 
on turbulent heat transfer to or from planar surfaces 
under incompressible, equilibrium thermal boundary 
layers. At incipient separation, a modified Reynolds 
analogy that accounts for the turbulent Prandtl num- 
ber and the equilibrium condition is deduced and finite 
limitations on the validity of the classical Reynolds 
analogy are placed, i.e. the turbulent Prandtl number 
must be between 0.7 and 2. His solution is based on 
the logarithmic law of the wall and the defect law of 
the outer region, ~Lnd is obtained through a numerical 
fourth-order Runge-Kutta  technique followed by a 
predictor corrector method. 

In this study, mass transfer data are collected to 
investigate the average mass transfer coefficient as 
opposed to the more extensively investigated local 
mass transfer coefficient. Moreover, a semi-empirical 
solution method based on the 1/n power profile is 
suggested, in which the Reynolds analogy is cir- 
cumvented and the Schmidt number, the power n, and 
the universal velocity coefficient 2 are related to the 
Reynolds number. 

APPARATUS AND PROCEDURE 

A subsonic low-speed open-loop wind tunnel hav- 
ing a cross-section of 0.61 x 0.61 m (2 x 2 ft) and 0.91 
m (3 ft) long was used in this study (Fig. 1.) The wind 

tunnel was equipped with a 40 hp variable pitch fan 
providing a maximum speed of approximately 46 m 
s -] (150 ft s-l) .  The wind tunnel comes equipped with 
a Pitot probe rack having axial and vertical degrees 
of freedom. The Pitot probe was connected to an 
inclined manometer. 

Temperature was recorded via two unshielded type- 
K chromel-alumel thermocouptes. The scale used for 
weighing the fiat plate was a Mettler PM6100. It has 
a range of 6.1 kg (13.3 ibm) and increments of 0.000 
1 kg (0.0001 Ibm) (see Fig. 2 for more detail about 
experimental set-up). While Figs. 1 and 2 show the 
leading edge of the plate to be right past the nozzle 
contraction, in actuality this contraction is much less 
abrupt, such that the leading edge is approximately 
66 cm (2 ft) from any noticeable change in slope of 
the nozzle. 

The naphthalene surface was cast in a recessed 
aluminum plate 64 cm (26") long, 34.29 cm (13.5") 
wide and 1.27 cm (0.5") thick. The recess was 0.64 cm 
(0.25") deep and 5.1 cm (2") from the leading edge 
(see Fig. 3). Four different naphthalene plate lengths 
were cast and tested at different velocities to increase 
the range of the Reynolds number. The average mass 
transfer coefficients were estimated by determining 
the change in mass of the naphthalene plate over a 
measured time period for a given speed. Transient 
mass losses were experimentally determined prior to 
each run. The naphthalene used in the different casts 
was Scintillation Grade +99% pure. It has a melting 
point of approximately 80.5 °C (176.9°F). The casting 
method used gave a smooth glass-like naphthalene 
surface. 

Due to the start-up time required for the fan to 
reach steady state and the time required for the man- 
ometer to stabilize, the naphthalene transient mass 
losses needed to be accounted for and subtracted from 
the steady-state results of the test. Prior to each run, 
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Fig. 2. Schematic of test set-up. 

the plate was weighed and placed in the wind tunnel. 
The wind tunnel fan was then started, the manometer  
was allowed to stabilize at the pre-established setting 
and then the fan was immediately shut-off. The plate 
was re-weighed. The change in weight was recorded. 
The plate was re-installed in the wind tunnel at which 
time the procedure was repeated for a desired period 
at the end of which the plate was re-weighed. Tem- 
perature readings were taken at the beginning and 
completion of each test. 

THEORY 
Consider flow over a sublimating flat plate as shown 

in Fig. 4. The flow is steady and the plate is parallel 

to the flow. The Von Karman-Pohlhausen  boundary 
layer solution for steady, incompressible, isothermal, 
parallel flow over a sublimating flat plate with no 
chemical reactions is : 

- -  ° 

where 

with 

where 

(1) 

d 
NA ly=0 = dxx [um(CA0--CA~)(~4] (2) 
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Fig. 4. Schematic of the boundary layer problem. 

and 

NA ]y = 0 = -- ~AB ~yA 0 

v, F1 CA° -- CA -] 

: Io 1 
The modified boundary  conditions are : 

B C I :  V x = 0  at y = O  

BC2:  vx=v~o at y = 5  

BC3:  Vx=Voo at x = 0  

(3v, 
BC4:  ~-y = 0  at y = 6  

BC5:  CA=CAo at y = 0  x>~Xo 

BC6:  CA=CA0 at x = x 0  y = 0  

BC7:  CA = CA~ at y = 5 

0C. 
BC8:  - - - = 0  at y = 6 .  @ 

For  turbulent  flow, a 1/n power profile will be assumed 
for both the velocity and the concentration inside 
their respective boundary  layers. Hence, the universal 
velocity profile can be written as a function of the 
universal distance from the fiat plate as : 

v + = 2(y+) '/" (3) 

where 2 is a positive real number. Replacing v + and 
y+ by their definitions, applying BC2 and obtaining 
the ratio between the general equation and its value 
at the boundary  condition, yields : 

v~ = (4) 

Substituting the definition of the shear stress at the 
wall into equation (1) and rearranging, after some 
mathematical manipulations,  yields" 

_ = [2,  ( n + 2 ~ n + 3 )  cf 2 - Re~J ]-2/(,+ 3) . (5) 

Applying BC2 to equation (3), solving for z0 and 
replacing in the definition of the friction coefficient, 
yields : 

C f2_ p/)2T~0 -- [ /~n ~.~]- -  2/(n + 1). (6) 

Because the flow is turbulent,  the shear stress must be 
defined so as to account for the turbulent con- 
tributions [14]. Hence, 

T y : (Y "]- era) 0/)__f_ x 
P @ .  (7) 

After some mathematical manipulations,  the total tur- 
bulent viscosity becomes 

(v + era) = nv ~ z 1 (8) 

For a trace concentration, the molar flux can be 
defined as [15]: 

ocA 
NA = -- (~Aa + ec) 0y (9) 

Again, using a 1/n relationship, the concentration pro- 
file is : 

c 0 - c  _ ( y y / n  

CA0 -- CA~ \ ~ ]  . (10) 

Replacing equation (9) into equation (8) yields : 

NA = (~AB-'}-gc)(CAo--CA~)+y (I-n)/n. (11) 

At this stage, a relationship between the total mass 
and momentum diffusivities is required. Reynolds et 
al. [16], in the solution to the heat transfer counterpart  
to this problem, proposed that the Reynolds analogy 
be used. The Reynolds analogy states that both the 
molecular and turbulent Prandtl  numbers are equal 
to unity, thus yielding a total Prandtl  number  equal 
to unity. This is a shortcoming of the solution since it 
omits the Prandtl  number  effects and renders it invalid 
for fluids having a Prandtl  number  other than 1. For  
heat transfer in air, this may not  be a problem since 
the molecular and turbulent  Prandtl  numbers for air 
are approximately 0.7 and 0.9, respectively. It is 
necessary, however, to modify this approach to make 
it appropriate for the more general case. 

Applying the Reynolds analogy to the mass transfer 
solution yields" 

Sc= 1. 

However, the Schmidt number  for naphthalene is 2.5 
[5]. It is suggested in this study that the molecular 
Schmidt number  raised to a power ~ be set equal to 
the ratio of the total momentum and binary diffus- 
ivities, such that : 

V+em 
So" (12) 

~AB "[- •c 

where u will be determined empirically. The nature of 
~, i.e. a real constant  or a variable, will be established 
later in this paper. 
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Combining equations (7) and (9)-(11) yields : 

1 
StAB --  (13)  

x sco2  o; " 

The use of ct gives the binary Stanton number as a 
function of the Schmidt number. The Stanton number 
is defined as the gradient of the diffusion thickness in 
the streamwise direction [14], such that : 

d64 
S I A B x -  d x "  (14) 

Applying the above definition for the Stanton number, 
and making the necessary substitutions into equation 
(12), yields : 

cf n S c  ~ ( 6 c ~ ' / n d  r [~¢\  '/~] 
2 J (15) 

where the newly proposed Sc ~ has been introduced 
into the solution for the friction coefficient. 

We next define the quantity A as the ratio of the 
concentration boundary layer thickness to the 
momentum boundary layer thickness : 

6c 
A = - - .  (16) 

6 

Combining equation (16) with equations (6) and (15) 
yields : 

o. (17) 
n-~- A a x  

The solution of the above equation is simplified by 
setting D = A ~"+ Z)/n to yield the first order non-homo- 
geneous linear differential equation : 

n + 2  1 1 dD n + 2  D 
n + 3  Se ~ x dx  + n + 3  x (18) 

having the solution 

6~ 

Substituting equation (16) into equation (12) and 
combining with the expression for the friction 
coefficient (5), the local binary Stanton number 
becomes : 

1 (n+2 n + 3 ) R e ~  
S t  AB~ -- Sc(n + 1)~/(n+ 2) ,~n 

Thus, the use of c~ allowed the Schmidt number to 
remain as an integral part of the solution for the 
boundary layer ratio. The use of c~ also allowed the 
final expression of the local Stanton number to be 
expressed as a function of the Schmidt number. Notice 
as well that the power of the Schmidt number has 
become dependent on the profile power, n. The 

Schmidt number would not have appeared as an in- 
tegral part of the solution had the Reynolds analogy 
been used. 

The average mass transfer coefficient is found by 
integrating with : 

1 ('~L 
]lmL 

-- L - - x 0  Jx0 
hmx dx. 

Solving for the local mass transfer coefficient from 
equation (17), and integrating to obtain the average 
mass transfer coefficient for a plate of length L and 
where x0 is a starting distance at which sublimation 
begins, yields : 

n + l  L 

x [1 -- (~ ) ( "+  2)/(n+ 3)] ("+ 1)/("+2) (21) 

Equation (21) can be solved provided that n, ce and 2 
are known. Both ~ and 2 are assumed to be functions 
of n, and n is a function of the Reynolds number. 

The turbulent boundary layer over a flat plate is 
similar in nature to that in pipe flow. In both cases, 
the boundary layer remains thin compared to the rest 
of the flow. In pipe flow, the boundary layer reaches 
the centerline when the flow becomes fully developed. 
Hence, due to the symmetry in fully developed pipe 
flow, the slope of the velocity profile at the centerline 
is zero. The slope of the velocity profile over a flat 
plate is also zero at the edge of the boundary layer. 
Therefore, it has been an established method to bor- 
row the pipe flow 1/n power velocity profiles for flat 
plate boundary layer solutions. Prandtl first intro- 
duced this assumption which led to replacing the 
centerline velocity and radius in pipe flow by the free 
stream velocity and boundary layer thickness over the 
flat plate. This analogy is not exact because in a pipe 
the velocity distribution is due to a pressure gradient 
whereas the pressure gradient is zero over a flat plate 
[171. 

Nikuradse [18] carried out experiments in which he 
was able to experimentally determine values of n for 
different Reynolds numbers in pipes. Table 1 lists 
Nikuradse's values ofn at different Reynolds numbers 
with the pipe diameter as the characteristic length. A 
best fit equation for Nikuradse's data is : 

1 
- = 0.25654-2.4004 x 10 -21ogl0(ReL) 
n 

R 2 = 0.976. (22) 

In equation (22), the characteristic length has been 
changed from the pipe diameter to the distance down- 
stream from the leading edge. This substitution was 
experimentally proven to be satisfactory [17]. 
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Table 1. Values ofn for different Reynolds numbers according to Nikuradse's experimental 
work 

Re 4 x 103 2.3 x 104 1.1 x 105 1.1 × 106 2.0 × 10 n 3.2 × 10 6 
n 6.0 6.6 7.0 8.8 10 10 

697 

The velocity coefficient and the Schmidt number 
power, 2 and ~, respectively, need to be related to n, 
and thus to the ]Reynolds number. Weighardt  [19] 
determined values of  2 for different values of  n based 
on Nikuradse 's  data [17]. However,  Kays and Craw- 
ford [14] suggest a value for 2 of  8.75 at n equal 7 as 
opposed to Wieghardt 's  8.74. In fractional form, 8.75 
becomes : 

70 7 x 10 7(7+3)  
8.75 . . . . .  

8 8 (7+  1) " 

Generalizing for any n yields : 

n(n + 3) 
,~(,,) - - -  ( 2 3 )  

( n +  1) 

Table 2 compares Weighardt 's  values for 2 with the 
values generated by equation (23). The percentage 
difference increases slightly with n. Both are empirical 
approximations. However,  equation (23) provides the 
advantage of  generating an infinite number of  2 values 
for any real value o fn  as long as it is in the vicinity of  7. 
This assumption will be verified with the experimental 
data in the results. 

Finally, ~ needs to be determined. For  this purpose, 
and due to the similarities between heat and mass 
transfer, reference is made to the law of the wall for 
heat transfer in air [14] : 

0.0287Re~-°z 
S t =  

0.169Re~ -° l  (13.2Pr-- 10.16)+0.9 

f o r n = 7 .  (24) 

Equat ion (24) is valid for 0.5 < Pr < 1.0 and 
5 × 105 < Re < 5 ~: 1 0  6. According to Kays and Craw- 
ford [11], the denominator  in the above equation can 
be set approximately equal to : 

0.169Re~ - ° l  ( 1 3 . 2 P r -  10.16) +0 .9  ~ Pr °'4 

forn  = 7. (25) 

Therefore, equation (21) can be rewritten as: 

S t P r  °'4 = 0.0287Re~ -°2 forn  = 7. 

Using the analogy between heat and mass transfer, 
the Prandtl and Stanton numbers can be replaced by 
the Schmidt and the binary Stanton numbers respec- 
tively. Hence, the above equation becomes : 

StAB~Sc °4 = 0.0287Re~ -°2 forn  = 7. (26) 

Therefore, from equation (21), the power of  the 
Schmidt number can be set equal to 0.4 at n equal to 
7. Hence : 

( 7+  1)~ 
0 . 4 - - -  

7 + 2  ' 

Solving for ~, and writing the solution in fractional 
form, yields : 

9 7 + 2  
= 0.45 - - -  

2 x 1 0  2 (7+3)"  

Generalizing for any n, gives : 

n + 2  
c¢ - 2(n + 3~' (27) 

Equation (27) yields a relationship between ~ and 
n based on a generalization of  the above arithmetic 
solution for cc The need for such a generalization is 
due to the limitation of  the arithmetic solution to 
n = 7. Equat ion (27) implies that ct can be simply 
represented as function of  n only. ~'s dependency on 
the Reynolds number is implied due to n's dependency 
on it. The validity of  equation (27), as well as equa- 
tions (22) and (23), will be verified by the correlation 
of  the final solution to the data. Table 3 lists values of  

and the power for the Schmidt number for different 
values ofn.  It can be seen that ~ is about  0.45 and the 
power of  the Schmidt number is about 0.4. 

Following is a summary of  the solution for the 1In 
power turbulent mass transfer from a fiat plate in 
parallel flow with a step change in concentration. The 
average mass transfer coefficient, the average binary 

Table 2. Comparison of the 2 values generated by equation 
(19) to Weighardt's [17] values 

2 2 
n (this study) (Weighardt) % difference 

6 7.714 - -  - -  
7 8.75 8.74 0.1144 
8 9.778 9.71 0.6980 
9 10.8 10.6 1.8867 

10 11.818 11.5 2.7668 

Table 3. Values of ~ and the Schmidt 
number power for different values of n 

n 
(n + 1)ct 

n+2 

4 0.428 6 0.357 2 
5 0.437 5 0.375 0 
6 0.444 4 0.388 9 
7 0.450 0 0.400 0 
8 0.454 5 0.409 1 
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Stanton number, n as a function of the Reynolds 
number, and 2 and ct as a function of n are listed. 

= [2" (n + 2)n(n + 3) ] ]lmL n + 3  ~Sc -(n+l)~l(n+2) -2/(n+ 3) 
n+ 1 L--xo 

StABLSc("+l)~l("+z)=n+312"(n+2)(n+3)1-2/(n+3)n+l 

XNeL2/(n+3)[l__~l-l[l__(~)(n+2)l(n+3)] (n+l)/(n+2) 

where 

and 

and 

1 
- = 0.256 54-2 .4004  x 10  - 2  loglo(Rez) 
n 

n(n + 3) 
2(n) -- - -  

( n + l )  

n + 2  
~(n) = 2 ( n + 3 ) "  (28) 

RESULTS AND DISCUSSION 

Due to the empirical nature of the proposed solu- 
tion, it was necessary to validate it by comparing it 
to mass transfer data. The apparatus and procedure 
described earlier were used for this purpose. The 
starting length for all tests was 5.08 cm (2"), the dis- 
tance from the leading edge of the plate to the recess. 
The length of the cast naphthalene portion of the plate 
was varied by gluing an aluminum strip a certain 
distance downstream from the leading edge. Data 
were collected at the following four different naph- 
thalene plate lengths as measured from the leading 
edge (i.e. the origin in Fig. 4) : 

I 64.8 cm (25.5") 

L = ~30.5cm(12.0") 

25.4cm (10.0")" 

L 21.0 cm (8.25") 

The data collected are graphically represented in Fig. 
5 as the Sherwood number vs the Reynolds number. 
The 1/n power solution discussed above is also 
graphed on the same figure. The Sherwood number is 
used to non-dimensionalize the mass transfer 
coefficient. It is defined as : 

Sc hmz L Sh (29) lJ 

All the data shown in Fig. 5 are within 10% of the 
Sherwood number predicted by the solution suggested 
in this study. The data collected covers a range of 

Reynolds numbers starting at approximately 40 000 
and extending to 2 000 000. The two data points at the 
highest Reynolds numbers were underpredicted by 
11.2 and 12.6°,/o, respectively. 

Based on the Sherwood number vs Reynolds num- 
ber plot, agreement between the proposed solution 
and the data collected in this study can be established 
for Reynolds numbers ranging from 40 000 up to 
1 500 000. Data up to a Reynolds number of 2 000 000 
were collected : however, further testing is required to 
justify agreement at this range. The margin of error 
between the data and the proposed solution was gen- 
erally within the random experimental error deter- 
mined through a Kline-Mclintock experimental error 
analysis. The error equation for the Reynolds number 
is: 

gJRe Re [ ( ~  ~h'~2 ( ~ ) 2  ]1/2 
= ~-) + . ( 3 0 )  

The error equation for the mass transfer coefficient is : 

¢~ ~lmL 4&n ~ 2 
[~r,,L--{(min--mr--(=im--mr,)J 

_{_ (~f)2 //(~,~x~2 15 2 C pvs /2 

I-/67131n(10)V .G(aTV 
x - - -  - +1 - -  Lt 1.8 av ) Jt .v) 

[ P<.~ "~2r/" 46m ,~2 ..}_ - -  I.p,,_p<, ) [[mi.-m,+(min,-m,,) ) 

+ t 7  ) + + t ~ -  ) J~ . (31) 

And the error equation for the Sherwood number is : 

6Sh= [ (£/~m[~2 + 1/2. (32) 

Sh L ~x hmL /] 

The respective errors were : 

6Re &Sh 
0.132% < ~ - e  < 16.67% 1.038% < Sh-  < 8.02%. 

The data shown in Fig. 5 have an average error of 
- 2 . 3 %  and a standard deviation of 5.6. 

Velocity measurements were made just downstream 
of the leading edge of the plate from which it was 
concluded that the flow was turbulent over the entire 
naphthalene surface. 

The use of a step discontinuity in sublimation allows 
for maintaining a sharp leading edge while having a 
surface that sublimes. Moreover, the location of the 
step change in this study was determined such that, in 
all trials, turbulent flow would exist at the beginning 
of the naphthalene surface. From a practical stand- 
point, the step discontinuity signifies the existence of 
a constant temperature heat sink or source away from 
the leading edge. It is also used for solving cases where 
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Fig. 5. Comparison of the experimental and theoretical Sherwood number vs the Reynolds number. 

the t empera ture  di,; tribution over the plate has  a cer- 
tain dis t r ibut ion,  the heat  t ransfer  f rom which can be 
more  easily ob ta ined  by replacing the tempera ture  
d is t r ibut ion by a summat ion  of  a series of  steps and  
solving. 

CONCLUSIONS 

A solut ion based on  the 1/n power  law was pro- 
posed such tha t  the Reynolds analogy was cir- 
cumvented  by keeping the Schmidt  n u m b e r  raised to 
a power  ~ as an  integral  par t  of  the solution. 
Expressions for the values of  ~ and  the coefficient for 
the power  profile in terms of  n were proposed.  In 
addi t ion,  an  empirical  re lat ionship relat ing n to the 
Reynolds  n u m b e r  was obta ined  based on  tu rbu len t  
pipe flow. Agreement  between the proposed solut ion 
and  the da ta  collected in this study was established 
for Reynolds  numbers  ranging f rom 40000 up  to 
1 500 000. D a t a  up  1:o a Reynolds  n u m b e r  of  2 000 000 
were collected. It  was found  tha t  the overall  Sherwood 
n u m b e r  could be ~tdequately predicted by equa t ion  
(28) for Reynolds  numbers  ranging from 40 000 to 
1 500000 and  Schmidt  numbers  f rom 1 to 2.5. The 
1/7 power  law consistently underpredicts  the da ta  by 
a b o u t  2.3% whereas the proposed method  provides a 
bet ter  fit over the entire range, especially at  Reynolds  
numbers  over 100 000. It  overpredicts  the da ta  by an  
average of  1.8%. 
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